Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We conducted a search for new ultracool companions to nearby white dwarfs using multiple methods, including the analysis of colors and examination of images in both the optical and the infrared. Through this process, we identified 51 previously unrecognized systems with candidate ultracool companions. 31 of these systems are resolved in at least one catalog, and all but six are confirmed as comoving companions via common proper motion and consistent parallax measurements (when available). We have followed up four comoving companions with near-infrared spectroscopy and confirm their ultracool nature. The remaining twenty candidates are unresolved, but show clear signs of infrared excess which is most likely due to the presence of a cold, low-mass companion or a dusty circumstellar disk. Three of these unresolved systems have existing optical spectra that clearly show the presence of a cool stellar companion to the white dwarf primary via spectral decomposition. These new discoveries, along with our age estimates for the primary white dwarfs, will serve as valuable benchmark systems for future characterization of ultracool dwarfs.more » « lessFree, publicly-accessible full text available January 29, 2026
- 
            Abstract After decades of brown dwarf discovery and follow-up, we can now infer the functional form of the mass distribution within 20 pc, which serves as a constraint on star formation theory at the lowest masses. Unlike objects on the main sequence that have a clear luminosity-to-mass correlation, brown dwarfs lack a correlation between an observable parameter (luminosity, spectral type, or color) and mass. A measurement of the brown dwarf mass function must therefore be procured through proxy measurements and theoretical models. We utilize various assumed forms of the mass function, together with a variety of birthrate functions, low-mass cutoffs, and theoretical evolutionary models, to build predicted forms of the effective temperature distribution. We then determine the best fit of the observed effective temperature distribution to these predictions, which in turn reveals the most likely mass function. We find that a simple power law ( ) withα≈ 0.5 is optimal. Additionally, we conclude that the low-mass cutoff for star formation is ≲0.005M⊙. We corroborate the findings of Burgasser, which state that the birthrate has a far lesser impact than the mass function on the form of the temperature distribution, but we note that our alternate birthrates tend to favor slightly smaller values ofαthan the constant birthrate. Our code for simulating these distributions is publicly available. As another use case for this code, we present findings on the width and location of the subdwarf temperature gap by simulating distributions of very old (8–10 Gyr) brown dwarfs.more » « less
- 
            Abstract We present the discovery of VHS J183135.58−551355.9 (hereafter VHS J1831−5513), an L/T transition dwarf identified as a result of its unusually red near-infrared colors (J−KS= 3.633 ± 0.277 mag;J−W2 = 6.249 ± 0.245 mag) from the VISTA Hemisphere Survey and CatWISE2020 surveys. We obtain low-resolution near-infrared spectroscopy of VHS J1831−5513 using the Magellan Folded port InfraRed Echellette spectrograph to confirm its extremely red nature and assess features sensitive to surface gravity (i.e., youth). Its near-infrared spectrum shows multiple CH4absorption features, indicating an exceptionally low effective temperature for its spectral type. Based on proper-motion measurements from CatWISE2020 and a photometric distance derived from itsKs-band magnitude, we find that VHS J1831−5513 is a likely (∼85% probability) kinematic member of theβPictoris moving group. Future radial velocity and trigonometric parallax measurements will clarify such membership. Follow-up mid-infrared or higher-resolution near-infrared spectroscopy of this object will allow for further investigation as to the cause(s) of its redness, such as youth, clouds, and viewing geometry.more » « less
- 
            Abstract We infer the growth of large scale structure over the redshift range 0.4 ≲z≲ 1 from the cross-correlation of spectroscopically calibrated Luminous Red Galaxies (LRGs) selected from the Dark Energy Spectroscopic Instrument (DESI) legacy imaging survey with CMB lensing maps reconstructed from the latestPlanckand ACT data.We adopt a hybrid effective field theory (HEFT) model that robustly regulates the cosmological information obtainable from smaller scales, such that our cosmological constraints are reliably derived from the (predominantly) linear regime.We perform an extensive set of bandpower- and parameter-level systematics checks to ensure the robustness of our results and to characterize the uniformity of the LRG sample.We demonstrate that our results are stable to a wide range of modeling assumptions, finding excellent agreement with a linear theory analysis performed on a restricted range of scales.From a tomographic analysis of the four LRG photometric redshift bins we find that the rate of structure growth is consistent with ΛCDM with an overall amplitude that is ≃ 5-7% lower than predicted by primary CMB measurements with modest (∼ 2σ) statistical significance.From the combined analysis of all four bins and their cross-correlations withPlanckwe obtainS8= 0.765 ± 0.023, which is less discrepant with primary CMB measurements than previous DESI LRG crossPlanckCMB lensing results.From the cross-correlation with ACT we obtainS8= 0.790+0.024-0.027, while when jointly analyzingPlanckand ACT we findS8= 0.775+0.019-0.022from our data alone andσ8= 0.772+0.020-0.023with the addition of BAO data.These constraints are consistent with the latestPlanckprimary CMB analyses at the ≃ 1.6-2.2σlevel, and are in excellent agreement with galaxy lensing surveys.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Abstract We present three new brown dwarf spectral-binary candidates: CWISE J072708.09−360729.2, CWISE J103604.84−514424.4, and CWISE J134446.62−732053.9, discovered by citizen scientists through the Backyard Worlds: Planet 9 project. Follow-up near-infrared spectroscopy shows that each of these objects is poorly fit by a single near-infrared standard. We constructed binary templates and found significantly better fits, with component types of L7+T4 for CWISE J072708.09−360729.2, L7+T4 for CWISE J103604.84−514424.4, and L7+T7 for CWISE J134446.62−732053.9. However, further investigation of available spectroscopic indices for evidence of binarity and large amplitude variability suggests that CWISE J072708.09−360729.2 may instead be a strong variability candidate. Our analysis offers tentative evidence and characterization of these peculiar brown dwarf sources, emphasizing their value as promising targets for future high-resolution imaging or photometric variability studies.more » « less
- 
            Abstract Beyond our Solar System, aurorae have been inferred from radio observations of isolated brown dwarfs1,2. Within our Solar System, giant planets have auroral emission with signatures across the electromagnetic spectrum including infrared emission of H3+and methane. Isolated brown dwarfs with auroral signatures in the radio have been searched for corresponding infrared features, but only null detections have been reported3. CWISEP J193518.59-154620.3. (W1935 for short) is an isolated brown dwarf with a temperature of approximately 482 K. Here we report James Webb Space Telescope observations of strong methane emission from W1935 at 3.326 μm. Atmospheric modelling leads us to conclude that a temperature inversion of approximately 300 K centred at 1–10 mbar replicates the feature. This represents an atmospheric temperature inversion for a Jupiter-like atmosphere without irradiation from a host star. A plausible explanation for the strong inversion is heating by auroral processes, although other internal and external dynamical processes cannot be ruled out. The best-fitting model rules out the contribution of H3+emission, which is prominent in Solar System gas giants. However, this is consistent with rapid destruction of H3+at the higher pressure where the W1935 emission originates4.more » « less
- 
            Abstract We present the discovery of 118 new ultracool dwarf candidates, discovered using a new machine-learning tool, namedSMDET, applied to time-series images from the Wide-field Infrared Survey Explorer. We gathered photometric and astrometric data to estimate each candidate’s spectral type, distance, and tangential velocity. This sample has a photometrically estimated spectral class distribution of 28 M dwarfs, 64 L dwarfs, and 18 T dwarfs. We also identify a T-subdwarf candidate, two extreme T-subdwarf candidates, and two candidate young ultracool dwarfs. Five objects did not have enough photometric data for any estimations to be made. To validate our estimated spectral types, spectra were collected for two objects, yielding confirmed spectral types of T5 (estimated T5) and T3 (estimated T4). Demonstrating the effectiveness of machine-learning tools as a new large-scale discovery technique.more » « less
- 
            Abstract Using a sample of 361 nearby brown dwarfs, we have searched for 4.6μm variability, indicative of large-scale rotational modulations or large-scale, long-term changes on timescales of over 10 yr. Our findings show no statistically significant variability in Spitzer’s Infrared Array Camera (IRAC) channel 2 (ch2) or Wide-field Infrared Survey Explorer W2 photometry. For Spitzer the ch2 1σlimits are ∼8 mmag for objects at 11.5 mag and ∼22 mmag for objects at 16 mag. This corresponds to no variability above 4.5% at 11.5 mag and 12.5% at 16 mag. We conclude that highly variable brown dwarfs, at least two previously published examples of which have been shown to have 4.6μm variability above 80 mmag, are very rare. While analyzing the data, we also developed a new technique for identifying brown dwarf binary candidates in Spitzer data. We find that known binaries have IRAC ch2 point response function (PRF) flux measurements that are consistently dimmer than aperture flux measurements. We have identified 59 objects that exhibit such PRF versus aperture flux differences and are thus excellent binary brown dwarf candidates.more » « less
- 
            Abstract While the vast majority of tidal disruption events (TDEs) have been identified by wide-field sky surveys in the optical and X-ray bands, recent studies indicate that a considerable fraction of TDEs may be dust obscured and thus preferentially detected in the infrared (IR) wave bands. In this Letter, we present the discovery of a luminous mid-IR nuclear flare (termed WTP14adbjsh), identified in a systematic transient search of archival images from the NEOWISE mid-IR survey. The source reached a peak luminosity ofL≃ 1043erg s−1at 4.6μm in 2015 before fading in the IR with a TDE-likeF∝t−5/3decline, radiating a total of more than 3 × 1051erg in the last 7 yr. The transient event took place in the nearby galaxy NGC 7392, at a distance of around 42 Mpc; yet, no optical or X-ray flare is detected. We interpret the transient as the nearest TDE candidate detected in the last decade, which was missed at other wavelengths due to dust obscuration, hinting at the existence of TDEs that have been historically overlooked. Unlike most previously detected TDEs, the transient was discovered in a star-forming galaxy, corroborating earlier suggestions that dust obscuration suppresses significantly the detection of TDEs in these environments. Our results demonstrate that the study of IR-detected TDEs is critical in order to obtain a complete understanding of the physics of TDEs and to conclude whether TDEs occur preferentially in a particular class of galaxies.more » « less
- 
            Abstract We present the discovery of 13 new widely separated T dwarf companions to M dwarf primaries, identified using Wide-field Infrared Survey Explorer/NEOWISE data by the CatWISE and Backyard Worlds: Planet 9 projects (hereafter BYW). This sample represents an ∼60% increase in the number of known M + T systems, and allows us to probe the most extreme products of binary/planetary system formation, a discovery space made available by the CatWISE2020 catalog and the BYW effort. Highlights among the sample are WISEP J075108.79-763449.6, a previously known T9 thought to be old due to its spectral energy distribution, which was found by Zhang et al. (2021b) to be part of a common proper motion pair with L34-26 A, a well-studied young M3 V star within 10 pc of the Sun; CWISE J054129.32-745021.5 B and 2MASS J05581644-4501559 B, two T8 dwarfs possibly associated with the very fast-rotating M4 V stars CWISE J054129.32745021.5 A and 2MASS J05581644-4501559 A; and UCAC3 52-1038 B, which is among the widest late-T companions to main-sequence stars, with a projected separation of ∼7100 au. The new benchmarks presented here are prime JWST targets, and can help us place strong constraints on the formation and evolution theory of substellar objects as well as on atmospheric models for these cold exoplanet analogs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
